
Surviving Client/Server:
Data Processing With Subqueries
by Steve Troxell

Database programmers just
coming into the world of SQL

and client/server may overlook the
subtle power of the SQL language.
You may be tempted to look on the
SELECT statement as a simple
“record read” I/O function which
will return a specified set of
columns and rows to be further
manipulated by the Delphi client
program. In reality, SELECT packs a
pretty powerful data processing
punch of its own. We skimmed the
surface of what SELECT can do back
in Issue 4 (November 1995). This
month we’re going to expand our
knowledge further and take a look
at just how we can leverage the
power of SELECT by making use of
subqueries.

Subqueries, sometimes referred
to as nested queries, can be
thought of as chaining two or more
queries together with the results of
one query feeding into or partici-
pating in the processing of the
other query. I should say at the
outset that the 16-bit BDE with
Delphi 1.0 does not support
subqueries in local SQL (ie, with
Paradox and dBase tables etc),
only with database servers.

The usefulness of subqueries
might best be explained with an
example. Suppose you want a list of
stores having above average sales.
Let’s say we have a table called
SalesByStore containing one row
per store with the total sales for
that store. First, we must obtain the
average store sales as shown in
Figure 1. Then, we would use this
value to create the list of above
average stores in Figure 2. We
would be tempted to have a Delphi
client program run the first query,
then substitute the average value
obtained into the second query.

However, with a little ingenuity,
we can accomplish the same thing
by changing Figure 2 to use a
subquery as shown in Figure 3. In

this case, the inner query (SELECT
AVG) is run first to obtain the
average value which is then substi-
tuted into the outer query. The
outer query then runs with a
constant value in place of the inner
query. All of this happens within
the context of a single SQL query
sent to the server and a single
result set passed back to the client,
instead of the two-stage process
we had before.

Subqueries don’t have to return
just a single value either. Suppose

you wanted a list of stores with any
employee making under $5.00 an
hour? Figure 4 shows how to do
this. The inner query finds all
employees making less than $5.00
an hour and returns a list of
Store_IDs where those employees
work. Notice that we use the
DISTINCT keyword to get a non-
duplicating list of store numbers.
Otherwise, if a store had more than
one employee matching the crite-
ria we would get duplicate
Store_IDs in our return set.

SalesByStore contains:

Store_ID TotalSales
–––––––– ––––––––––
6380 132.80
7066 1,821.25
7067 1,486.30
7131 1,400.15
7896 604.40
8042 1,232.00

SELECT Average = AVG(TotalSales) FROM SalesByStore

Average
––––––––––
1,112.82

➤ Figure 1: Obtain the average sales figure

SELECT Store_ID, TotalSales FROM SalesByStore
 WHERE TotalSales > 1112.82
 ORDER BY TotalSales DESC

Store_ID TotalSales
–––––––– ––––––––––
7066 1,821.25
7067 1,486.30
7131 1,400.15
8042 1,232.00

➤ Figure 2: Stores with above average sales

SELECT * FROM SalesByStore
 WHERE TotalSales > (SELECT AVG(TotalSales)
 FROM SalesByStore)
 ORDER BY TotalSales DESC

Store_ID TotalSales
–––––––– ––––––––––
7066 1,821.25
7067 1,486.30
7131 1,400.15
8042 1,232.00

➤ Figure 3: Above average sales with a subquery

10 The Delphi Magazine Issue 14

Correlated Subqueries
What if you wanted to find all the
stores whose sales are above the
average sales for the same city?
This is a little different because it’s
not a simple two-stage process
where we can obtain the result of
one query and plug that directly
into a second query. In this case,
the query that determines the
average for the city changes as we
examine stores in different cities.
Figure 5 shows how to make a
correlated subquery where the
values from the outer query affect
the execution of the inner query.

In this query we cannot evaluate
the inner query first and then use
its results to evaluate the outer
query. Here the outer query exe-
cutes and, as it examines each row
in SalesByStore, the inner query
executes once per row using the
City value for the current store.
Notice that we must use a table
alias on the outer query in order to
reference it from within the inner
query. In its entirety, this query
logically states, “For each row in
SalesByStore (S1), calculate the
average for all stores in the same
city as the current store (from S1),
and return only those stores whose
TotalSales are greater than the
average.”

Ranking Data
Let’s use a real world example to
see how much more we can do with
subqueries. Every time someone
accesses a page on TurboPower’s
web site, a “hit” record is written to
a transaction table that posts,
amongst other things, the date and
time of the hit and the page that
was hit. In addition a summary file
of total hits by page (see Figure 6)
is updated for each month via an
insert trigger on the transaction
table.

Since analysis by month is one of
our key purposes in collecting this
data, and since the size of the table
is relatively small (50 or so web
pages by 12 months for a year’s
worth of data), it is worthwhile to
make a separate table for these
summary statistics. This also gives
us the flexibility to purge the trans-
action table periodically while still
retaining the distilled historical

statistics. Retaining historical
information like this may not be as
important for web page hits, but for
product sales, customer order
activity, and other similar events,
historical summary data may be
very important.

Obviously, our marketing folks
would very much like to evaluate
the effectiveness of the web site by
seeing an ordered list of “Top Page
Hits” for any given month. With
web page hits summarized by
month, it is very straightforward to

produce this list. We simply run the
query shown in Figure 7 and print
off the output for the Marketing
Guy.

Unfortunately, Marketing Guy
returns and asks “How simple is it
to put a ranking on these from 1 to
whatever so I can easily pull off the
top 20?” We can actually get the
ranking within the result set itself
by using a subquery as shown in
Figure 8.

This is a bit different from the
subqueries we’ve looked at so far.

SELECT Store_ID, TotalSales FROM SalesByStore S1
 WHERE TotalSales > (SELECT AVG(TotalSales) FROM SalesByStore
 WHERE City = S1.City)
 ORDER BY Store_ID

Store_ID TotalSales
–––––––– ––––––––––
7066 1,821.25
7131 1,400.15

➤ Figure 5

CREATE TABLE WebMonthly(
 Page varchar(50),
 YearMonth char(6), /* YYYYMM */
 TotalHits int,
 PRIMARY KEY (Page, YearMonth))

➤ Figure 6

SELECT StoreName FROM Stores
 WHERE Store_ID IN (SELECT DISTINCT Store_ID FROM Employees
 WHERE PayRate < 5.00)

StoreName
––––––––––––––––––––––––
Videos R Us
Big Bag O’ Videos
Videos To Go
Superstar Video Rental

➤ Figure 4

SELECT TotalHits, Page FROM WebMonthly
 WHERE YearMonth = ’199607’ /* July 1996 */
 ORDER BY TotalHits DESC

TotalHits Page
––––––––––– ––––––––––
2143 default.htm
773 download.htm
436 products.htm
368 pressrel.htm
296 apd.htm
233 sleuth.htm
199 ordering.htm
185 orpheus.htm
140 systinfo.htm
134 orp21.htm
112 newsletr.htm
85 about.htm
85 orderup.htm
81 order.htm

➤ Figure 7

12 The Delphi Magazine Issue 14

Here we are not using a subquery
to restrict the rows returned by the
outer query, but instead we are
using the subquery to compute one
of the columns in the result set.
This is still a correlated subquery,
so the subquery will run for each
row processed by the outer query.
It is critical that a subquery used in
this sense return exactly one row
and exactly one column or it
wouldn’t make sense in the main
result set.

The outer query retrieves all
rows from the WebMonthly table for
July 1996, which equates to all the
web pages hit in that month. For
each row retrieved, the inner query
(SELECT COUNT(TotalHits)) counts
the number of rows in the same
month (YearMonth = W.YearMonth)
having TotalHits the same as or
higher than the TotalHits of the
current row of the outer query
(TotalHits >= W.TotalHits). There-
fore, the row with the highest
TotalHits gets ranked as number 1
because there is only one row with
the same or greater TotalHits (the
row itself). The row with the sec-
ond highest TotalHits gets ranked
as number 2 because there are
exactly two rows with the same or
greater TotalHits (the row itself is
equal, and the row ranked number
1 is higher).

Finally, we order the list by
specifying the column number to
order by rather than the column
name. Some database server ven-
dors do not allow ordering by a
computed column name, but for
some reason, it’s still legal to order
by that same column using the
column number. Go figure...

Duplicate Values In Rankings
In Figure 8, note that ABOUT.HTM and
ORDERUP.HTM have the same hit
count, and therefore have the same
ranking (there is a tie for this posi-
tion). However, the fact that we
skip from rank 11 to rank 13 is very
disheartening. Why this happens is
straightforward. When the query
processes the row for ABOUT.HTM,
there are 11 rows with a higher
TotalHits and 2 rows with the
same TotalHits (ABOUT.HTM and
ORDERUP.HTM). Therefore, the rank is
13. The exact same logic applies

when ORDERUP.HTM is processed.
Again, the rank is 13.

How do we correct this and
achieve a ranking list with no gaps?
All we need to do is add the
DISTINCT keyword within the inner
query as shown in Figure 9. Why
does DISTINCT correct this? Now,
all rows having the same value for
TotalHits are counted only once as
a whole. Now when processing
ABOUT.HTM, there are 11 rows with a
higher TotalHits and one distinct
match with the same value. There-
fore, the ranking is 12. Since rows
with the same value are counted
only once, you are guaranteed
to have an unbroken chain of
consecutive rankings.

Ranking Multiple Sequences
So you hand off your new statistical
report and lean back in satisfaction
thinking “what else could our
Marketing Guy possibly want?”

“Great!” he says. “Can you stick
the ranking for last month in there
too? And show the number of hits
from last month as well, so I can
chart the up or down movement.”

Figure 10 shows just how to do
this. Since this is a fairly involved
query, I’ve used variables to hold
the current and last month values
to make it easier to follow. This
script is written for Microsoft SQL
Server, there are subtle differences
in how other servers handle
variables.

SELECT Rank = (SELECT COUNT(TotalHits) FROM WebMonthly
 WHERE TotalHits >= W.TotalHits AND
 YearMonth = W.YearMonth),
 TotalHits, Page
 FROM WebMonthly W
 WHERE YearMonth = ’199607’ /* July 1996 */
 ORDER BY 1

Rank TotalHits Page
––––––––––– ––––––––––– ––––––––––––
1 2143 default.htm
2 773 download.htm
3 436 products.htm
4 368 pressrel.htm
5 296 apd.htm
6 233 sleuth.htm
7 199 ordering.htm
8 185 orpheus.htm
9 140 systinfo.htm
10 134 orp21.htm
11 112 newsletr.htm
13 85 about.htm
13 85 orderup.htm
14 81 order.htm

➤ Figure 8

SELECT Rank = (SELECT COUNT(DISTINCT TotalHits) FROM WebMonthly
 WHERE TotalHits >= W.TotalHits AND
 YearMonth = W.YearMonth),
 TotalHits, Page
 FROM WebMonthly W
 WHERE YearMonth = ’199607’ /* July 1996 */
 ORDER BY 1

Rank TotalHits Page
––––––––––– ––––––––––– ––––––––––––
1 2143 default.htm
2 773 download.htm
3 436 products.htm
4 368 pressrel.htm
5 296 apd.htm
6 233 sleuth.htm
7 199 ordering.htm
8 185 orpheus.htm
9 140 systinfo.htm
10 134 orp21.htm
11 112 newsletr.htm
12 85 about.htm
12 85 orderup.htm
13 81 order.htm

➤ Figure 9

14 The Delphi Magazine Issue 14

At first this query looks very
intimidating, but fear not! It’s actu-
ally more of the same thing we’ve
been doing, just a whole lot of it in
the same query.

Our main outer query is the same
as before, selecting all the web
pages for the given month. Only
now we’re assigning a table alias of
M1 to this set of rows.

The RankThisMonth column is the
same subquery as in Figure 9. It is
a correlated subquery tied to the
current row in M1 which computes
the ranking for the current month.
The logic is therefore “for every
web page in the current month
(M1), count the number of other
web pages in that month (WHERE
YearMonth = M1.YearMonth) that
have distinct TotalHits greater
than or equal to this page (Total-
Hits >= M1.TotalHits).”

The RankLastMonth column is a
subquery that itself contains a
subquery. The outer query re-
trieves last month’s WebMonthly
record for the current web page.
The inner query then uses that to
compute last month’s ranking. This
is essentially the same as the Rank-
ThisMonth subquery, except it is
correlated to last month’s web
page row (M2) instead of this
month’s (M1). The net result of
these two nested queries is a single
value representing the ranking of
that web page for last month. Note
that when a particular page was
not present last month, we conven-
iently get a null value for its
ranking and hit count.

The HitsThisMonth column is sim-
ply copied from the TotalHits from
the current month’s web page row
(M1). The HitsLastMonth column
requires a subquery to retrieve last
month’s row for the current web
page.

To recap, for every row in M1:
➣ A query is launched to count the

number of other rows having
the same or greater TotalHits
for the same month (RankThis-
Month);

➣ A query is launched to retrieve
the matching web page row for
the previous month and then
another query is launched to
count the number of other rows
having the same or greater

TotalHits for last month
(RankLastMonth);

➣ Finally, a fourth query is run to
retrieve the matching web page
row for the previous month
(again) in order to get last
month’s total hits.

Obviously, a query such as this is a
good candidate for a stored proce-
dure, with parameters for the two
months to compare. Note this
algorithm is not limited to compar-
ing consecutive months: any two
points in time can be compared
(for example, current month and
same month last year).

Complicated queries such as
this may perform slowly for large
sets of data depending on how
widely the values are distributed
and how well you indexed the
tables. But for the type of data
we’ve examined here and similar
data summaries (product sales by
product and month, for example),

performance should not be much
of a problem. Also, bear in mind
that these types of query are not
run very frequently.

Conclusion
We’ve seen how to use subqueries
to add another dimension of proc-
essing power to our SQL queries.
Subqueries can generally be used
anywhere an expression compat-
ible with the result of the subquery
can be used. Next month, we’ll con-
tinue the theme by seeing how to
work with case functions, running
totals and cross tabulations.

Steve Troxell is a software engi-
neer with TurboPower Software
where he is developing Delphi
client/server applications for the
casino industry. Steve can be
contacted at stevet@tpower.com
or on CompuServe at 74071,2207

DECLARE @vThisMonth char(6)
DECLARE @vLastMonth char(6)

SELECT @vThisMonth = ’199607’ /* July 1996 */
SELECT @vLastMonth = ’199606’ /* June 1996 */

SELECT
 RankThisMonth = (SELECT COUNT(DISTINCT TotalHits)
 FROM WebMonthly
 WHERE YearMonth = M1.YearMonth AND
 TotalHits >= M1.TotalHits),
 RankLastMonth = (SELECT (SELECT COUNT(DISTINCT TotalHits)
 FROM WebMonthly
 WHERE YearMonth = M2.YearMonth AND
 TotalHits >= M2.TotalHits)
 FROM WebMonthly M2
 WHERE YearMonth = @vLastMonth AND
 Page = M1.Page),
 HitsThisMonth = M1.TotalHits,
 HitsLastMonth = (SELECT TotalHits FROM WebMonthly
 WHERE YearMonth = @vLastMonth AND
 Page = M1.Page),
 M1.Page
 FROM WebMonthly M1
 WHERE YearMonth = @vThisMonth
 ORDER BY 1, 2

RankThisMonth RankLastMonth HitsThisMonth HitsLastMonth Page
––––––––––––– ––––––––––––– ––––––––––––– ––––––––––––– ––––––––––––
1 1 2143 2066 default.htm
2 2 773 874 download.htm
3 3 436 526 products.htm
4 4 368 509 pressrel.htm
5 5 296 341 apd.htm
6 (null) 233 (null) sleuth.htm
7 7 199 200 ordering.htm
8 6 185 207 orpheus.htm
9 8 140 185 systinfo.htm
10 9 134 183 orp21.htm
11 10 112 125 newsletr.htm
12 11 85 111 orderup.htm
12 12 85 92 about.htm
13 13 81 77 order.htm
14 (null) 71 (null) sl-scrn1.htm
15 15 53 54 delphi32.htm
15 15 53 54 gi.htm
16 14 50 61 btree.htm

➤ Figure 10

October 1996 The Delphi Magazine 15

	Correlated Subqueries
	Ranking Data
	Duplicate Values In Rankings
	Ranking Multiple Sequences
	Conclusion

